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A formalism is developed for calculating the complex refractive
= index of a monatomic gas as a function of frequency in the.region of an
Z absorption. The treatment involves a direct study of the properties of

) the dressed photon state in the gas, and includes effects due to trans-

<E lational motion of the atoms as well as the dipolar ''resonance'' interac-

CATALOGED BY

cé:) tions between them. It is necessary to assume that the electromagnetic
properties of the gas are describable in some detail by a linear frequency -
and wave number-dependent susceptibility. 2 set of coupled nonlinear
integral equations are derived which together determine the susceptibility
function and hence the observable refractive index. The ''static'' limit of
large atomic mass is considered in some detail, and a first correction to

it is also obtained. The results are compared with measurements by
Tomiser on the linewidths of the sodium D-line at various temperatures

and pressures. We obtain qualitative agreement, while previous theoret .

ical linewidths were too small by a factor of order 103.
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I. INTRODUCTION

The problem of calculating absorption line shapes in monatomic
gases, especially the contribution of the dipolar ''resonance'' interactions
between different absorbers, has been attacked in the past in several
different ways, all of 2 more or less ad hoc na\ture;l The various methods
(''collision'', ''statistical'’) are in agreement among themselves at least
as to the qualitative features of the line shape, and as to the order of
magnitude of the linewidth. However, it appears to have gone largely
unnoticed that they are in strong disagreement with the latest experimental

2,

results, In particular, the calculated ''resonance'’ w'u:lthl is too small
by a factor of the order of 103 to fit the experimental data, and the Doppler
width is also much too small to account for the observed effects. (Moser
and Schultz3 give a detailed comparison of the theoretical results with
their own and other experiments,)

One of us4’ 3 has developed a theory of the line shape which begins
from the more fundamental point of view of actually studying the properties
of the stationary states of the quantum mechanical system composed of
radiation field and matter. This theory, however, considered each absorber

to occupy a fixed position in space, so that effects due to the motion of the

atoms were left out. The original formulation depended on the use of

! R. G. Breene, Jr., Revs, Modern Phys. 29, 94 (1957)
2 5. Tomiser, Acta Phys. Austriaca 8, 198 (1953); 8 276 (1954); 8, 323
(1954); 9, 18 (1954).

3 H. Moser and H. Schultz, Ann. Physik 7, 243 (1959).

4 C. A. Mead, Phys. Rev, 120, 854 (1960).

5 C. A, Mead| phy.- Rev. _1_2__0_, 860 (1960).
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""damping operators”". but more recently the results have been rederived
by means of a simpler formalism, and at the same time brought into rough
agreement with experiment. 7

The purpose of the present article is to remove the defect of neglecting
the translational motion of the absorbers, and also to discuss in somewhat
more detail than before the comparison of theory with experiment. Our
method will be a generalization of that of reference 7; that is, we will
study the properties of the stationary states of the system but will also
assume that the system is describable by means of a refractive index.
This assumption will be generalized to take account of the possibility of
V'spatial dispersion".8 The plan of the article is as follows: In section
II, the notation is introduced and some preliminary matters discussed,
including the ''cutoff function’' inserted in certain Hamiltonian matrix
elements which is supposed to represent roughly the effect of finite atomic
size and which later prevents certain integrals from diverging. In section
III, the basic assumption that the medium is describable in terms of a
refractive index is stated precisely as a2 statement about the stationary
states of the system. Section IV consists of the derivation of a set of
integral equations which determine the refractive index. Section V dis-
cusses the "'static limit'' of large atomic mass (which corresponds to the
situation in references4, 5, and 7) and also the lowest order correction for
finite mass, It is shown that under the conditions of Tomiser's experiments
on Sod'mm2 the static approximation should be adequate. Section VI gives

a more detailed comparison with Tomiser's results in the static limit,

6 C. A. Mead, Phys. Rev. 112, 1843 (1958).
7 C. A. Mead, Phys. Rev. 128, 1753 (1962).
8 J. Neufeld, Phys. Rev. 123, 1 (1961).
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including the effect of the spin-orbit splitting. We give a detailed
comparison only with Tomiser's experiments on the Sodium D-line; the
situation with the other experiments of references 2 and 3 is qualitatively
similar. A brief discussion of the cutoff function used is given in an
appendix.

A subsequent paper by one of us will discuss another method for
obtaining values for certain integral properties of the line shape, including

corrections for the failure of one of the assumptions of Sec, IIL

II. NOTATION AND HAMILTONL:N

Our system consits of N identical absorbers, each with mechanical
mass m, distributed in 2 volume V, within which the radiation field is
required formally to obey periodic boundary conditions, In the ''initial'’
state | 0>, each atom .. has a momentum ﬁaA assigned to it, and the
number of atoms with momentum in a given region of wave-number space
is described by a Boltzmann distribution at some temperature T. For the
sake of definiteness, the ground electronic state of each atom is considered
to be a nondegenerate s-state, and the only excited level (or at least the
only one of interest to us) is assumed to be a triply degenerate p-level.
The energy difference between the two levels is K Vo A given state of
the system of radiation field plus matter may differ from the state , 0> in
one or more of three ways: (1) There may be a photon present; this is
denoted by a greek letter, e.g. N\ denotes the presence of a bare photon of
wave number‘i(’; and polarizati.onlgk. (2) One or more of the atoms may
be excited; this is indicated by a capital Latin letter denoting which atom is
excited, with a subscript giving the direction of ''polarization'’ (electric
dipole moment matrix element between excited state and ground state).

Thus Ai represents the excitation of atom A, with dipole moment matrix
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element in the i-direction (i = x,y,z). (3) One or more of the atoms may

have acquired a momentum different from that assigned to it in the state

l 0> . X (A) indicates that atom A has an excess momentumf &£ , so
P aad AN

that its total momentum is ‘5(34\ + ﬁ). The way in which these symbols

are combined in specifying a state is best explained by means of a few

examples of states represented in our notation and with their properties

also written out in words:

14{,,46“(A)> . Photon present with wave number‘it\ and polar-
ization E,z ; atom A has excess momentum [};
A P -

all other atoms as in state I 0> .

'AA)&(A)“E)(B)>: Atom A excited, with ''pblarization'! in i-direction;
atom A has excess momentum 'ﬁ’\/g, ; atom B has
excess ofﬁﬁ&l; all other atoms as in state ' 0>;

no photons present,

We are interested in constructing the ''dressed'' photon state
l:), which is an eigenstate of the complete Hamiltonian with energy

4 Y (vx =c KX)' and which in some sense approaches the bare photon
state | A in the limit of zero interaction. We assume that '_):> can
be built up entirely out of two kinds of states:

(1) States with one photon present, and no electronic excitation.

{2) States with one and only one atom excited, and no photons ..

present.

States coming under categories (1) and (2) may still, of course, include
any combination of excess translational momenta for the various atoms.
Other states, such as two-photon states and states with several atoms

excited, may be included later by means of perturbation theory, if desired.
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The a2pproximation of limiting ourselves to the states of types (1) and (2)

should hold in the frequency region v, = v, Which is the region we are

interested in here. It could be made more formally precise by means of

4,9,10

the Arnous-Bleuler transformation, but this would make some of

the subsequent manipulations more complicated so it was decided not to

use it in this article.

9 E. Arnous and K. Bleuler, Helv. Phys. icta 25, 581 (1952).

10 W. Heitler, The Cuantum Theory of Radiation (Oxford University Press,

New York, 1954), 3'rd ed, pages 348-353.

The refractive index can be thought of as describing the propagation

of the electric field matrix eiernent

40&‘0(”@):1) = 51@50 ‘,&)’”{,><"L'{>'

This immediately leads to a difficulty: It would appear that because of

momenturn conservation </Z Ii) = 0 unless gy = AZNX . This would

mean that

<ol E, (R) ] 1>=E,°exp('« Zn-R D

corresponding to a refractive index of unity. This problem does not arise
in the situation treated in references 4, 5, and 7, since there the momentum
conservation is spoiled by holding the atoms fixed. This apparently hope-
less difficulty really is the result of a rather trivial effect: Momentum is
indeed conserved when an electromagnetic wave provagates through a
medium with altered wave number, but the excess momentum is caken up
either by the medium as a whole or by the walls containing the medium.

Since explicit inclusion of the effects of the walls in a calculation is not
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feasible, we will treat the excess momentum as belonging to the medium
as a whole. From this point of view, the propagation of the field should be
considered relative to the center of mass of the medium. Therefore, in-
stead of

EolR) =£'Z % 1 £°"L explify-R) + s):'l exp('ih'&)}
{(where sy and Sy are respectively destruction and creation operators,

apart from constants), we use
= 4 +

:5157 {51 exp( i&z.g)-)ﬂup('ﬁz"xi\) + .{ W('i,ﬁi:) ”;exp"ig‘[::’\)

When E(B\) is applied to a state, it not only creates (destroys) a photon,

but also alters the momenta of all the atoms by a small and equal amount

in such a way that total momentum is conserved. From now on, therefore,
when we write down a state it is to be understood that, in addition to the
photons, excitations, etc. specifically noted, the state also includes an
additional superimposed momentum of the entire medium (equally divided
between the N atoms) such that the total momentum of the state is zero.

With this understanding all the states we are talking about have the same

momentum, and we can study the propagation of

CQIE@ 13> = Z,Z GlE @y >y 13>,
There will be no need to mention this explicitly again. Indeed, most of the
subsequent manipulations could be gone through formally without performing
this trick at all, the only.trouble being that they would be meaningless
due to both sides of the various equations being zero. The energy associated
with this superimposed motion is, of course, negligible in the limit N — o0,
We now give some typical Hamiltonian matrix elements. All the

ones we will need will differ from these at most by the presence of an
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excess momentum on an atom appearing on both sides of the matrix
element and having no effect except to shift the energy in the case of a
diagonal matrix element. The energy of the state I O> is taken as
zero. We obtain the following matrix elements for the Hamiltonian

operator K :

Cai ) H o 1> =i lv, + Hla, 20 ()
where
Kla n) = S—[2q- 2+ 22 ; (2)
W A 2m 14 ’
MHIg> = kv 35y (3)
1/2 /2 . 1/2

gy WIHly> = - B p€qiidy)

<Ata$‘1(“))ﬂlgj"{’\z(3)n(ﬁ -A/r{')(A)> = 4_;-/“‘26'(/;) A"Z. )

o (agh (4

In equations (4) and (5), A4 is the absolute value of the dipole moment
matrix element for the transition, and G( J{ ) is a cutoff factor which we now
pause to discuss.

Our state l 0) has each atom in a definite momentum state, and
we are not including any interactions in which two atoms can exchangc . ...
momentum with both remaining in the ground state; that is, we are neglect-
ing direct interactions between atoms in the ground electronic state. If
these interactions were included, their main effect would be to introduce a
correlation in the positions of the atoms such that the distance between the
centers of mass of two atoms can never be less than an atomic diameter,
We take this into account by altering the interaction so that, while atoms
are formally permitted to approach each other arbitrarily closely, they

are not permitted to exchange electronic excitation except at distances
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greater than the atomic diameter r. In this way, the transfer of excitation
should proceed just as if there were no pairs of atoms closer to one another
than L In momentum space, this means that the momentum transfer
accompanying the exchange of electronic excitation should not be greater
in order of magnitude thandﬁ(l/ro), and this is embodied in the factor
G(# ). Thus, G is a function which is nearly unity when VWL llro. and
becomes very small or zero when /£ >> l/ro. For the Gaussian cutoff
factor used later on in this article, a way of relating the momentum space
cutoff to a particular value of r is given in the appendix. This prescription
is not unique, however. |
We will use the remainder of this section to dispose of one more

preliminary matter. Later on we will have occasion to evaluate the quantity

W = lim [Kai, g ) H - gyna)>|[ 2
£ 50+ 7 Wby -vy - Kaa foap * 1g] (6)

In situations of interest to us here,

va - v°'4<v°

Thus, we can estimate W by replacing Y\ by Voo With this replacement,

however, Re W is just the second-order transverse self-energy of the state

IAA K (A)),and may therefore be absorbed into v_ by renormalization, If
)~‘ o

we also assume
K(i A, //é\ - {Al»z) << v,
~\
and remember that G(vo/c) T 1, then we get (replacing the sum over 1 by

integration)

2

W= iko =-24i5 m?, (7)

ndc
cw
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where g~ is the natural linewidth. In what follows, we will always use (7).
The approximations involved are: (1) INeglectof recoil corrections to the
natural linewidth, which are small and can be included if desired; (2)
Neglect of of the dependence of Im W on v\ which is also very small in
the frequency regicn of interest; (3) Neglect of the cutoff-dependent Re W
when vx;! v The formal justification of this requires the Arnous-Bleuler

transformation. 49,10

If the reader will accept this one result, he will be
spared the complications that this transformation would introduce in the

subsequent manipulations.

IIl. BASIC ASSUMPTIONS

Classically, one may expand the electric field E and Polarization

~I\) in Fourier series as follows:

oF
geo = 0 Z o n mgp ewilg oz
w 4 .
A'!\’(r,t) =f¢ dvé.c P, (v)M{.C expa[{“n(‘(-‘f-vt].

Here the notation £ reprecents a wave number ,ff\ and a polarization unit
vector g\‘ ; for each wave number there are three polarizations, two
transverse and one longitudinal. The allowed wave numbers are those
compatible with the periodic boundary conditions.

The requirements that the medium be isotropic and describable by
a refractive index (but with the possibllity of ''spatial dispersion'') may be

expressed by

4w fk (V) = F(V; /té o&( -/\‘g&) E& (V)D (8)

where F is a function depending only on the frequency v, the absolute value
/A of the wave number, and whether the mode [ is longitudinal or trans-

verse. We will also use the notations Ft(v, X)) FI(V'K ) to indicate the trans-
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verse and longitudinal susceptibilities respectively.

Quantum mechanically, g‘l and E become operators, but other-
wise the situation is unchanged. In the Schrddinger Picture, the frequencies
are to be replaced by energy differences divided by 4, and we have different
equations for the various matrix elements of the operators. A quantum

analog of eq. (8) is

olamBe | XD =Fuou A -£) KO ELIA>. (9

It will be convenient to rearrange (9) slightly before using it. We

notethait

- 1 2
E—Ecoul-—; )tﬁ\

where E is the electrostatic longitudinal Coulomb field, and A is the
A coul A

transverse. vector potential (we use Coulomb Gauge throughout). We also

have

iv

Lol -+ 24> =2 ofalr>, (10)

c

Hence if we define

= + iv
é Ecoul A ,ﬁ"
[

then we can combine (9), (10), and (11) to obtain

Lolanp [ X> =Fw,, /A W £o1<0 Exli'). (12)

Eq. (12) is the expression we will use for the requirement that the medium
be describable by a refractive index.
It is also useful to notice that the electrostatic dipole-dipole inter-

action, whose matrix element is given by (5) may be written as

-}(AB= ot Ecou (B4
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where/-l-A is the electric dipole moment operator of atom A and Ecoul
(B, A) is the electrostatic field produced by atom B at the position of atom

A. We can therefore write
Cai W) | H B, g (B), (g - NA) >

. .
- N E e w1, 03

We also note that eq., (4) can be rearranged as follows:

ai g g (A)/ﬂ{7>= -1v—c°-/cézj<011\7/1>
= - €Evi; TX_ <0/é717>

T -/44613'(0167/7)) (14)

since we are interested only in the situation where

lvx-vof<< v, - (15)

In order to obtain a closed set of integral equations to determine
the functions F', we will also need a stronger assumption which is a gen-

eralization of (12):

(16)
K @ e X2 plvy - Kigp K0 A2 £ 1B EL D

(A)

(YN

where is the polarization of the medium due to all atoms except atom
A. To understand the meaning of (16), suppose that the initial state of atom

A is not known with certainty, so that the ''initial'’ state of the medium is
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not simply ' 0 > ,» but

[or> = Jo> + u‘Nl\ a) > .

Now the matrix element <0'l£c,):> will have a term of frequency v, -

K(,SA’ {AL ) equal to uza(hf‘ﬁ},and a similar situation will hold for

2. Equation (16) expresses the assumption that the polarization of the

rest of the medium is still related to the field (which now includes contri-
butions from the virtual excitations of atom A) by the same susceptibility
funciion. Eq. (16) does represent an approximation beyond (12); Classically,
we can always limit our considerations to a linear susceptibility simply by
making our fields arbitrarily small; but in quantum mechanics we cannot
make the matrix elements appearing in (12) become small. Their values
are fixed by the solution of the eigenvalue problem. Nevertheless, we can
define a function F by means of (12), and this will lead to no contradictions
as long as we restrict ouselves to those matrix elements in (12). Moreover,
this is the obvious quantum mechanical analog to the classical procedure of
allowing the fields to approach zero: the one-photon state is as close to
zero as we can get and still have any field at all. Strict linearity would be
expressed by requiring that expressions such as (12) hold for all matrix
elements of the operators involved, and in particular for those appearing in
(16). Hence, (16) is a stronger linearity assumption than (12). In this
article we will assume that it holds, but in the next article it will be shown
how the failure of (16) to hold exactly can lead to changes in the value of the

function F appearing in (12).
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IV, INTEGRAL ECUATIONS FOR F
In order to find expressions for the various matrix elements
appearing in eqs. (12), (16), we must know something about the dressed

photon state , ;‘> . Denoting general states by a, b, etc., we have

Z (v, -v,) <a| 2> =5b*a(alj~llb><bl'k>- (17)

where 4 v, is the energy of the zero-order state / a > » The appropriate

''retarded’’ solution of (17) is

<a'-)l>=t,'l(yx-va+ Lj)-léb#aéxl}l]b)(bli? (18)

in which the limit g-—) Ot is always understood.
Now let us examine some field and polarization matrix elements.

If /z is a transverse mode, so that there are photons of type 7 , WE

have

<OI£,Z | 3= Ko ZZIAZX1I7~> (19)

For the polarization we have

B = . g [ oG-z
1 ' , 3
P,Y = -—v- é? . llj’\(r)exp(-t L<AZ . »f)d r
1 .
Sy ZA ~é~ 7 S oxpl-t @Z'L\)’
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so that
<0/l awPyli> = &, <ol 4Py i,xj,g,z(i\))(Aj.(:/? by I
- ﬁ'\.{& ZA €y; <Aj,,€7 @) I, (20)

Here and henceforth a summation over repeated coordinate indices j, k,
etc. is understood. We will now apply (17) to I ays= /Aj,fy (A) > ,

and also use (14), The result is
I3 30 : 2 ’ T
Zlw-K (,3‘;'\’ 417)] <f‘tJ»4{f»Z Ay = HEYj <o 152I2«><1l \)

+ Sy y oy WA (g -2 DIXS, (g A 0) 13D
o)
+ZB#A' ‘C<Aj'§z(A)lj{m.' (‘/([ -af(.C)(A)'K&(B)XBI-' (47-:&)(,-;)4& (B) , -x>

(20a)

Here the last summation goes over all longitudinal modes o_ , and we have:

defined
A W

We now apply (18) to the state / a) =/§.(¢7 -KS NA) > , and also
! - A

use eqs. (6), (7), and (19). The result is
(21)

£ lw -K (3,\'57)](131'.'5&2(13-)11) = wbyiolE g ) -totai g ya) | 3>
* g Ly WK By A oy BIXB Ui 3>

The last summation now goes over all modes, transverse and longitudinal,
In arriving at (21), we have assumed that the omission of the one photon

mode »Z from the summation in (6) does not affect the result. The matrix
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elements of % are defined by

aigt WK By g, B (-1, 1) > = (i) H B 2 (B e g M) >

ok B HI e -5 08 > K - 2, @) HIBy e (BY (-8 >

+ (22)
£y - K, g * i3]

The first term on the right-hand side of (22) is nonzero only for longitudinal
modes, the second only for transverse modes.

We now make the following definition:

-iﬁcréj.!z (&)%) +éB a0y KIfy Ceyt ) 2 (BYy x )
x(Bl Wy 2, NA) & (B
= Ajk(u.d(,z,sA)<Ak,/£(7(A)l-k> . (23)
Now eq. (23) can be inserted into (21), and the result solved for<Aj,/an (A)‘i)
- 2

The result is
(ai gy @Iy = - & oléyli> (o -Klay» Fy) -al Exb 24)

The matrix {/=(WwW -K-a )-1 is, of course, the inverse of the matrix

whose elements are
(W - K)é},& - A JA«

It is now a simple matter to substitute (24) into (20), sum over A uaing

the Boltzmann distribution, and solve eq. (12) for Ft with the aid of the
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result. This gives the solution (25)
2 -1
F:(‘*‘"’Z“ - dmet N (B exp(-qu)éyJ‘[u-k(g':.lz)-A(w.,!Z:39 jkY
bi v u. X ( LLS
bk

where

2
ﬁ = 4 s and k is Boltzmann's constant.
2 mkT

We could have replaced the matrix product under the integral sign by

€95 Uik€yy = Sl - 32 ) Uik

It will also be necessary to derive an expression analogous to (25)

for the longitudinal field. If ,{ is a longitude mode,

QIELRY =E,0lE . ai, Ze 18X Al g (8) IR, (26)
and
L0 [4wB [ D= i;A ZB %(Bk.:k(s)lb (27)
Now eqs. (17), (18) may be used much as before to give
Wlw - Klag: 20 1B 2 (BI > =5A* p$Bw: 2 (B[ A[A b1 (A)XA ot (81D
ik (B (B)) N>,

*g;qa,x*fgk-&w)lﬂ/A,.,;r,(:x;(;k- 2B > dplty A, (&-4{)(3)!1).
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By using (6), (7), (13), (22), (23) in a manner similar to the derivation of

(21), we easily find

2o k
2L
th g ap B Lo 6B,

in which we have also made the assumption that the omission of one atom

#lw - Klape i 1Bk £, (B IND = 4 QIELNND

(28)

from the sum in (26) will not noticeably affect the result, Now one proceeds
just as in the derivation of (25): Solve (28) for <Bk’~/£C (B) | _): > , insert
the result in {27), carry out the summation (replacing it by integration

over the Boltzmann distribution), and solve eq. (12) for Fl' The result is

2 3/2 . -
Fgoe) = - D N (8, jexp(-ﬁ;q"),%llw Kiq, £ )-8, Kgil!
" M -

Kk .3

Eqgs. (25) and (29) determine the two functions F if Ajk can be
determined. We must now turn our attention to the evaluation of &4 . There
are (as far as we know) two methods for doing this. One uses a formal
infinite series expansion and is perfectly general if the series converges.
The other gives the result in closed form, but requires the assumption
(16) which has not been used up to now.

(1) Formal Expansion

By comparing eqs. (20a), (21), (23) it is easy to see that
=Z, <an Ky WIH [ a><aln>. (30)
The summation goes over all states except l ay = ’7). Since there is no
singular contribution from ’7}, it may be considered to go over all states,

The next step is to substitute (18) into the right-hand side of (30).

Then use (18) again to replace all the terms < bll)on the right-hand
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side of the result, except for / b> = ) Ak’ }C\'L (A) > » and repeat

this indefinitely. This gives
£ 85w 2,90 ALE )X

ZZ Lajige W)/ H ] 2 3<alH o Xb 12D
bi(v -va + 15)

- Z g WA K A 41 5<a 2 @3>
(o L)

; Z’Zb/‘(éj' &) IH ] a5 [ Kb IR

u'(vx-va + Lg)

Z(nJ. 2@ K< A & 0) ><Coo 2 ) ) S
hvy-v, + 1 5 )

Z Lais e () Ha X< a) JHIb>CIHIA & 11D 2a) 13D
'y (v -v, + tj)(v - vy + LS)

+--(31)

where a prime on a summation means that the three states /Ak’fnl (A)>
are to be ommitted (k = x,y, z). By inspection of this series, we see that

Ajk can be expressed formally as

Z/(Aj. 2> H A e (8)>
2 Kvy -v, * i3 )

“- Ajk(w'hl .ISA) =

/
+Z . (Aj.,/;c(A)/i/laXalj{/b Yo/ H{A L B) D
apb lz(v)‘-va + .lj)(vx-yb + “5)

+omen (32)
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The expansion (32) will be made use of in the following paper. For
the remainder of this article, however, we will make use of a formal closed
form solution which depends on the assumption (16).

(2) Closed Integral Equation Using (16)

We first consider the contribution of the longitudinal coulomb

part ofK to Ajk' Denoting this by a superscript £, and using eqs. (5),

(22), and (23), we can express this term as
1 3 =
¥ Ajk(w'fA"ﬂA)<Ak’,c\L wir>z

.z

nta, (B0 £BNHIBR, 2 (B), (-2 Wa)(Bk, K (B), (X -2 )(4) S

2 (&)
'8 G D

- 4r Glagr == /_l 33

v/ G I .

where
1 (A) Y. 4
i A =
o Con i B @rggowiny,

and the sum over L, of course, includes only longitudinal modes. Using

(5), (13), and (33), we can now obtain

g IBYE | 2D = Q- dB) € | dofela) DA KA IV

¥ Z;;¢A<(f-,’,’()(ﬂ)lél/3k.4z£(ﬁ). (2 g N8N x .

X<Bkn~.l.‘ (B)y (ﬁ"/:c)(A)’ _x>o
1 (A)

- 4w A 3 an . f
= --;-/,G(q) -zz- <Ak'f.c (A)lx) - 7/46(4&) <

(34)
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It is also evident that

2{a)
-4 )(A)/4up_(m x> = 4"/“ /z (35)

/(A
It is now a simple matter to insert (34) and (35) into (16) and solve for FO(. ( \;

2(A)

F G IF o - K g, /an)'.‘ac] £ o B IR
L =T (36)

1 +G(/{£)F![“) 'K(g‘{\if‘l '/./.k)n ML]

The next step is to substitute (36) into (33), replace the sum over K by

integration, and extract the value of Ajk . The result is

2 0 olfi%e B
2 /&(/Z-')FI[(‘)'K(S’N -/Z. );/t] '2 d/f

|¢.A (w,Z,q) = -
21[2 1+G-(/L')FI[iA)-’<(QD/L'l')t/l]
m MM
(37)

There is one more con.tribution to Ajk » nhamely that due to the

transverse part of K . It can be written as

kol Z,a) a3V IV

:Z ) 2w vo/“’ (J'-'(/bz)é'y‘iézk</3k.({ -~/\Z’z)(A),l<z,y(B) ]17
PRIV vyl vy K Ga gl * 1S

) t (A)

2 5 Yot GUpe 4y 8)
?' v,z [vx - v7 - K(;‘lA. 7) + g ] ’Z

where
t.(A) ) -
= Bk, (/Z-X, NA) X 4(B) I\
E[ ZB#AGYK < (M n/[ A z >
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and we have used (22), (23), plus an obvious generalization of (4). We now
proceed much as in the derivation of (37). First, by using (4), (14), and

(18), we find

p-pp €413 >= £ %4y ) E gy E g8 gl -y HaIRS
= o 1Eyby >y fpar 13

t (A)
) /¢I<OI57/1>IZ[61 kA2 x>+ F’z ] (39)
‘[VX = v’z -K(gA'/Mz-A/AVZ) :} i 5 ]
We also have, obviously,
t(A)
- Fyia) | 4npy @IS = 4‘:;“ ( 40)

t (A)
Now one substitutes (39) and (40) into (16), solves for [; , inserts the

result into (38), and again extracts the value of At . The result is

t
o (W2,
tAJk( f 2)

, (41)
v 4 2 -,Lr_k_ 2 3
Y N R A R e e i
2
8w e, - cnt - Kl k- + 15 \L

X

( + VOZ G(/L')c /C'Ft[w - K(qrm‘/’))o ']

N - cr' - K(q, £-4' t i5 ))
where we have also used (4) and (14) to get the matrix element of E .

x (v
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The matrix elements of A are now given by

by = 1S fjk + A;’k + A;k (42)
Equations (25), (29), (37), (41), and (42) now determine both functions F,
The observed refractive index {ﬂ is determined by the requirements that,
first, the electromagnetic waves propagating in the absence of macroscopic
charges are purely transverse; and second, that the usual relation between
wave length and susceptibility holds. Thus we write

2 v v
( (W) -1 = Ft(u.f "’c) = F (v, ( °/c)- (43)

The solution of (43) will in general require the analytic extension of Ft into

the upper half of the complex /¢ -plane,

V. STaATIC LIMIT AND LOWEST ORDER CORRECTION

In the previous section, a set of coupled integral equations was
derived which in principle determines the refractive index if the assumption
(16) is valid. However, due to their highly nonlinear character (among other
things), it is evident that a closed form solution of the equations is not
feasible, Therefore, suitable approximations must be found., The reader
will remember that we are particularly interested in the experimental con-
ditions prevailing in Tomiser's experiments on sodium vapor. It will be
recalled that the observed linewidth in these experiments was much greater
than the Doppler width, suggesting that the effects of translational motion
of the absorbers is not very important; this corresponds to the limit
m —> @, which we call the '"'static limit.'"" This limit is also of interest
as a check on the work of references 4, 5, and 7, in which the absorbers

were considered fixed in given positions in space.
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In the static limit, all the quantities K become zero, and it is

easy to see that A becomes a scalar:
8 Sjk

Because A is a scalar, we also have

. 85k

and it further becomes possible to assume that Fs and 4, are both

functions only of & . We have from (25), (29), (37), (41), (42) in the

static limit

2
F(w) = A N S S (44)
K \' W - a(w)
and
W) = -ic + al(w) + al(w), (45)
where
2
KA: () = - /uz Fs("") ‘l_ G'Z(/(a)d3 (46)
2w 3
1+6& (£)F (W)
and
¢ v jz.z 2 GZ 3
gn 3 v, e+ i15)2+ 22 5
1y 2 s A

x{cn) x(v)‘-cfc + i.S)

(47)
Equations (44) - (47) are essentially the same as the corresponding

equations in references 5 and 7. There are two main differences: first,

the use of the Arnous-Bleuler transformation brings about some small

alterations in the denominator of (47), which will be discussed in more

detail in the next section. Second, in the earlier work the cutoff function
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G was left out until the very end and then inserted only when it was needed
to prevent a divergence; hence, G does not appear in the analog of (47) at
all, nor in the denominator of the analog of (46). Neither of these differences
is very significant; the omission of the Arnous-Bleuler transformation and
the way of bringing in the cutoff are both rather arbitrary, nonessential
elements in the formalism. Since Fs is a function only of &}, we have in
this Limit % (W)-1 = F_().

We would now like to discuss the lowest order finite-mass cor-
rection to the static approximation, but this will be made easier if we first
make another approximation. A comparison of (37) with (41) and (7) shows

that

1 t
bik > > T B,

This is because only the integral (37) requires the cutoff ior convergence,
making A‘ proportional to the third power of the cutoff wave number.
For the remainder of this section, therefore, we will set A equal to A H
we will also omit the G in the denominator of (37) since, as pointed out
above, the way in which the cutoff is brought in is rather arbitrary.

Equations (29), (37) now become

(48)
3/2 _ ny”
Fy(w, %) = - b J, exp(-pa K- Klg. 2£) -a(, gl oo aas
Sk 3
_ B CHanF (w-Kig - £), 21 DK a3,
Ajk(w./;.g) = -8 L AR M wt (49)
1+ Fl[u-/{(a.{\t-/“t')-/b']
where
2
D = M_ i )
K v
2 (50)
B=dp—
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We now expand F, and a in inverse poweres of m, with the

jk

intention of evaluating the zero- and first-order terms. We write

Flw, ) = ps(t,.)) + W, x) (51)
m
and ( )
. 2 72
Bl .q) = ss(@) 8 + LAL m“ v (52)

It will now be convenient to use a specific form for the cutoff function. The

choice made in this section is
2 2
G/ ) = exp(-L 1)

According to the prescription given in the appendix, this corresponds to a
cutoff radius of r, = £ 12

We now insert (51), (52) into (48) and (49), expand in powers of
(1/m), and equate coefficients of like powers. By equating the zero-order

coefficients we get
F ) = - ——— . (53)

and

AB(‘A’) s — ’ (54)

where

A

Equations (53), (54) can easily be solved, giving the result

-(W+ D) + [(w-D)? - 4pAJ?

2w +A)

F ) = (55)
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According to (55), F, has an imaginary (absorptive) part in the region

J - p] <« 2m@AVM?

In this region, of course, the square root is taken so that the imaginary
part is positive. In the regions to the left and right of the absorptive
region, it is seen by analytic continuation, or by physical requirements,
that one should take the negative square root on the left, the positive one
on the right.

Since o is of the order of an atomic radius, in a dilute gas

/\ >>D.

Therefore, the denominator in (55) is a slowly varying function of W in the
absorptive region. If the denominator is considered approximately constant,

we obtain for the half-width at half-height

2 1/2
/2 _ 1/4 M N . 56
gwl/z = 3pA)/% = ( 5 — (53) (56)

Thus, the half-width should be proportional approximately to the square
root of the density of the gas.
When we equate coefficients of the first power of (1/m) in (49), we
get
B

Y'k(w'ﬂ'q) = -
A (R )

f (me')d%[-rﬁw%—[23:(5-4;) +

‘.

K’ pe
({\f-ﬂ—')z] t S(U:/Z')}—i;z—k—
. . 3/2 2 3
ng ] # 2q- N+ —1+ u)z
B fotates e S

2
31+ F (&)
[ s -] (57)
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where

3w = jc—zw)g(w,/z,')d%' : (58)

In arriving at (57), we have made use of eq. (2) for K. The prime on
Fg denotes diff erentiation with respect to () . We can now insert (51)

and (57) into (48), expand, and equate coefficients of (1/m);

g 2) = a@w) + A% + o) § (W), (59)
where
' 3/2
a(w) = - DBF W) “2 (——) ;
[w-a ]+ F ) 8L 24
BF (w) 3/2
bw) = - 2 ¥ (1+ s (—) (60)
2w - & (] 2 3+ F w)° 2K
oty = D B

31+ F ()

To evaluateg((.')), we substitute (59) into (58), getting
5w =f GA i [aw) + bl 2 + ew) 5 ad e

3/2

™ 3 b(iv) '
z (—,) (W + __—(z.— + c(w) S W1. (61)
( z.cz 2 4
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Equation (61) is now solved for (W)

3/2 3 b(w)
(=) [aw) + =53]
g(w) = 2.L2 QL . (62)
1 - L] ) 3/2 @
NPV

Equations (59), (60), and (62) determine g. Since A is still a scalar

in this approximation, we still have 1=‘t =F Note that the result is still

7
independent of T.

We have calculated Im Ft( [V N volc) in both zero- and first-order
under the conditions of one of Tomiser's experiments on sodium. F,is
sufficientl y small in this case that we can neglect its dependence on wave
number. The following parameters were usdd:

T = 688.1° K.
P = 0.503 mm Hg.

£ =2.83x10"% cm

joz = 4,167 x 10'35 erg cm3

0 =3.199 x 107 radians/sec

N=2w/v, =5.89x107° cm.
The results are shown in figure 1. Obviously, the lowest-order correction
for finite mass has only a very small effect. If one looks closely enough
at the figure, one can see that the finite-mass correction slightly raises
the maximum of the line; it is therefore to be thought of as a narrowing
effect. This can be understood qualitatively as follows: In the static approx-
imation, the line is broadened due to the transfer of excitation from one
absorber to another. This transfer may be accompanied by a momentum
transfer of any size up to the cutoff momentum. When the finite mass is
taken into account, however, excitation transfer accompanied by large

momentum transfer is inhibited due to the recoil of the atoms spoiling the

energy balance; i.e., excitation transfer with large mementum transfer is
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oo longer a ''resonance'' process. This effect might be called ''recoil
narrowing'',

The half width at half maximum from fig. 1 is (in wave length
units) 1.48 A, The experimental values are 1.565 & for the 3/2 line, and
1. 075 for the 1/2. Thus, we are able to get qualitative agreement with
experiment with a reasonable value for oL . In the next section, we take into
account explicitly the doublet character of the line, making possible 2 more

detailed comparison with the experimental results.

VI. THE DOUBLET CaASE IN STATIC APPROXIMATION

The sodium D-line is not actually a transition from a nondegenerate
s-level to a triply degenerate p-level, as assurmmed up to now. The transition
is actually from 2S to 2P. and the excited state has two components, 2P1/2
and ZP3/Z' The wave lengths of the transitions are respectively 5896 ?X
and 5890 ?-\ ,

£ detailed derivation of the formulas for the doublet case would be
largely repititious. We will therefore content ourselves with rearranging
some of the formulas of the previous section for the static limit, and then
giving without proof the corresponding generalization to the douhlet case,
The justification for the use of the static limit is the smallness of the lowest
order correction found in the previous section.

In the static limit we have (cf. (53))

P?-1=F,=- —2— (63)
W- a

{ We can drop the subscript s from now on, since in this section we are
always dealing with the static limit.)

If we omit the G in the denominator of (46), and yse (50) and (63),
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we find
2
ot s Byl g )j@—z(n)d%
64
B 1.€? V) (64)
¢? &~

where again G = exp(—.CZ/L Z). If instead we use a sharp cutoff in config-
uration space at a distance Ty, we find

2 2
A1=4n5(1-¢:)
32 (

o

{64a)

In case of (47), we will have to rearrange the denominator some-
what to get the same result which was obtained in references 5 and 7 with the
aid of the Arnous-Bleuler transformation. This appears here to entail
approximations, but it is really more accurate than direct evaluation of (47)
would be. First, we omit all factors of G from (47), since they are not
needed to ensure convergence. With the notation (L = v, we can write the

denominator as
2

v
v(vx-v+i§){v(vx-v+i§)+ 20 (62-1) .

Next we replace 12\ by Vo i it is further assumed that the main contribution
to the integral is from the region v & v, SO that v can be replaced by
1/2(v + vo). The denominator now becomes

02w i PR .

With all these rearrangements, the integral is easily evaluated:

8t = -iom (-1) (65)
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Hence, by combining (45), (64a), and (65), we obtain

4#25( 1 - (2
YR

Equations (63), (66) can be solved for 6 for any value of .

)

A:ifa_i'

In the doublet case the procedure is similar, though it is complicated
by the presence of the spin-orbit splitting. One may use either a simple
generalization of the methods of references 4 and 5, or of reference 7, or of
the earlier sections of this article. (Actually, we used the methods of
references 4 and 5). We denote the frequencies of the 2P1/2 and 2P3/2

transitions by v; and v,, respectively. Instead of (63), we find

2 D{ 1 2
ol = - 21 4 __° } (67)
( 3 vx-vl-A vk vz A

The equation for 4 remains formally unchanged: (66) still holds, with B
given by (50)./,0 is now understood as the orbital dipole matrix element in
which spin effects are neglected. We have neglected Vi V2 against vy
so the natural linewidth is treated as the same for both lines,

We have calculated the absorption curves for a number of points in
the region of Tomiser's experiments, using eqs. (66) and (67) with rg = 8 :’)\.
a value which is reasonable and seems to give good agreement.

In carrying out these calculations, it is convenient to define

v, = 1/2 (1.:l + vZ);
; = Y2 " "1
2 o *
3
[- buc” N
3 *
Vo A"

Figure 2 shows a typical absorption curve, corresponding to

r‘ = 109,78 (T = 688.1°K, P = )0.503 mm Hg.) iThe comparison between
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experimental and theoretical linewidths is plotted in figure 3. It will be
observed that there is qualitative agreement for both components of the
doublet, even though the theoretical widths are approximately proportional

to the square root of the density (cf eq. (56)), while the experimental depen-
dence appears to be linear. The theoretical widths obtained by the methods ..
of reference 1 would be too small to be seen on a graph of the scale of fig.

3, so we are justified in claiming to have improved the agreement. In the
following article, it will be shown that the discrepancy which remains may

well be due to the failure of the approximation (16).

APPENDIX
We can introduce a cutoff into the ordinary electrostatic interaction

between two charge densities ()1 and (Z by writing
33
$- f€l(£l) Colip) € ) r dr,
4 K) < 3 .3
= %Q)('n_f(l(ﬁ\l) Fz(ﬁz)e""[”;% (ry - 5p)1d7r d7r,

) %"—Zp 2 g ﬁ‘:ﬂe*?“i('rﬁdsrd Sg(’z(zz)ew(-"mz>d3’zg
M,

(A -1)

Here the sum goes formally over all :2 satisfying periodic boundary con-
ditions in the volume V. If G =1, we have the usual electrostatic interaction.

If, both charge distributions can be treated as dipoles, we make the replace-

ment .
exp("fg, :-\ ) ’_,;_ l+/.,;\5.z\~
and find
§= 4n G(/‘)z (/.[,/‘,1) (”'/"’2)' (A-2)
v A /C m Im M M
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The matrix elements corresponding to (-2) are given by eq. (5). Now, we
can determine an appropriate choice of G just as well by looking at its effect on
(A-1) as by examining (A -2). In other words, we consider the effect of G on

the function

= ar : () . .
P =< Z,z . 'QE;,_T exp(4 £ - x). (4-3)
y

The criterion we use for relating G to a cutoff radius r is

lim _ -
L. ? @ =1, (A-4)
and
@ (0) = lz,. (A-5)

Thus f(r) is to become constant as r becomes << Ty causing § in
{(A-2) to become small; it is to behave as an ordinary electrostatic potential
forr >>rg If one inserts G = exp(-,(z/tz) into (A-3), one finds (replacing

summation by integration, of course)

Py == Ut (45> K)
Q) = 2;7-2 | (A-6)
From (A-5) and (A-6), we find
g = el (a-7)

which is the relation between the wave number and configuration space
cutoffs mentioned in sec. V. This prescription will also be used in the
following article. It is obviously not unique, however, For example, if
we required consistency between (64) and (64a), we would get a different

result.
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